
KATHMANDU UNIVERSITY SCHOOL OF
MANAGEMENT

BBIS

COM 102 : 3 Credit Hours

7. Functions

06/02/2022
1

Outlines

Functions (6 hrs)
8.1 Defining Function

8.2 Use of function

8.3 Function Prototypes

8.4 Passing Argument to a Function

8.5 Recursive function

8.6 Storage Class

2

Introduction

• A function is a collection of statements that work together to complete a
task.

• Every C program contains at least one function, main(), and even the
simplest programs can specify more functions.

• divide up our code into separate functions.

• The division is such that each function performs a specific task.

• A function declaration tells the compiler about a function's name, return
type, and parameters.

• A function definition provides the actual body of the function.

3

…

• A function is a set of statements enclosed within curly brackets ({})
that take inputs, do the computation, and provide the resultant
output.

• You can call a function multiple times, thereby allowing reusability
and modularity in C programming.

The function main() in the program is executed first.

main()

{

//statements

}

• All other functions are executed from main which calls them directly
or indirectly

4

Need of Functions???

• Enables reusability and reduces redundancy.

• Makes a code modular.

• Provides abstraction functionality.

• The program becomes easy to understand and manage.

• Breaks an extensive program into smaller and simpler pieces.

5

Types of Functions

1. Built-in Functions or Library functions
• Also referred to as predefined functions, library functions are already defined

in the C libraries.

• do not have to write a definition or the function’s body to call them.
• simply call them

• need to include the library at the beginning of the code for calling a library
function.

• Printf(), scanf(), ceil(), and floor() are examples of library functions.

1. Built-in Functions or Library functions

2. User defined functions

6

2. User-defined functions

• These are the functions that a developer or the user declares, defines,
and calls in a program.

• Increases the scope and functionality, and reusability of C
programming as we can define and use any function we want.

• can add a user-defined to any library to use it in other programs.

7

• Local variable
• A local variable is a variable that is declared inside a function.

• local variable can only be used in the function where it is declared.

• Global variable
• A global variable is a variable that is declared outside all function.

• A global variable can be used in all function

Local and Global Variable

8

Defining a Function

•General form:
return_type function_name (parameter list) {

body of the function
}

• Return Type − A function may return a value. The return_type is the data type

of the value the function returns.

•Some functions perform the desired operations without returning a value. In

this case, the return_type is the keyword void.

• Function Name − This is the actual name of the function.

• The function name and the parameter list together constitute the function

signature. 9

…

• Parameters − A parameter is like a placeholder. When a
function is invoked, you pass a value to the parameter.
• This value is referred to as actual parameter or argument.

• The parameter list refers to the type, order, and number of the
parameters of a function.

• Parameters are optional; that is, a function may contain no parameters.

• Function Body − The function body contains a collection of
statements that define what the function does.

10

Example

/* function returning the max between two numbers */

int max(int num1, int num2) {

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}
11

More…

12

Functions

13

Function declaration / function prototype
• A function declaration tells the compiler about the number of

parameters function takes, data-types of parameters, and return type
of function.

• Putting parameter names in function declaration is optional in the
function declaration, but it is necessary to put them in the definition.

// A function that takes a charas parameters
// and returns a pointer of type char
char *call(char b);

// A function that takes a char and an int as parameters
// and returns an integer
int fun(char, int);

// A function that takes two integers as parameters
// and returns an integer
int max(int , int);

// A function that takes an int pointer and an int variable as
parameters
// and returns a pointer of type int
int *swap(int*,int);

14

Example

int sum(int, int); // function prototype

int sum(int x, int y) { // function definition

z = x + y;

return z;

}

Int main () {

int a=5,b=5,c;

c = sum(a,b); // calling function

}

15

Classwork

• Program to calculate maximum of three numbers using function.
• You will learn:

• Functions

• Decision making statements (if else)

16

The main function

• The main function is a special function. Every C++ program must contain a
function named main.

• It serves as the entry point for the program. The computer will start
running the code from the beginning of the main function.

• Types of main Function:
1) The first type is – main function without parameters :

// Without Parameters
int main()
{

...
return 0;

}

17

…
2) Second type is main function with parameters :

// With Parameters
int main(int argc, char * const argv[])
{

...
return 0;

}

• The reason for having the parameter option for the main function is to
allow input from the command line.

• When you use the main function with parameters, it saves every group of
characters (separated by a space) after the program name as elements in
an array named argv.

• Since the main function has the return type of int, the programmer must
always have a return statement in the code. The number that is returned is
used to inform the calling program what the result of the program’s
execution was.

• Returning 0 signals that there were no problems.
18

Functions

• Depending on argument and the return value function can be
classified as:
• Function with no argument and no return value.

• Eg ;void Print()

• Function with argument but no return value.
• Eg: void add(int x, int y);

• Function with no argument but return value.
• Eg: int add();

• Function with both arguments and return value.
• Eg: int add(int , int);

19

Function with no argument and no return value.

void display() {

printf(“Hello world”);

}

Void main() {

display();

}

20

Function with argument but no return value.

void addition(int x, int y) {

printf(“The sum is: %d”, x+y);

}

Void main() {

addition(2,3);

addition(10,20);

}

21

Function with no argument but return value.

int addition() {

int x=5,y=10;

return x+y;

}

Void main() {

int sum;

sum = addition();

printf(“The addition is: %d”, sum);

}

22

Function with both argument and return value.

int addition(int x, int y) {

int add;

add = x+y;

return add;

}

Void main() {

int sum;

sum = addition(10,20);

printf(“The addition is: %d”, sum);

}

23

Nesting functions

24

25

